Scarce data driven deep learning of drones via generalized data distribution space

نویسندگان

چکیده

Increased drone proliferation in civilian and professional settings has created new threat vectors for airports national infrastructures. The economic damage a single major airport from incursions is estimated to be millions per day. Due the lack of balanced representation data, training accurate deep learning detection algorithms under scarce data an open challenge. Existing methods largely rely on collecting diverse comprehensive experimental footage artificially induced augmentation, transfer meta-learning, as well physics-informed learning. However, these cannot guarantee capturing designs fully understanding feature space drones. Here, we show how general distribution via generative adversarial network (GAN), explaining under-learned features using topological analysis (TDA) can allow us acquire under-represented achieve rapid more We demonstrate our results image dataset, which contains both real images simulated computer-aided design. When compared random, tag-informed expert-informed collections (discriminator accuracy 94.67%, 94.53% 91.07%, respectively, after 200 epochs), proposed GAN-TDA-informed collection method offers significant 4% improvement (99.42% epochs). believe that this approach exploiting knowledge neural networks applied wide range challenges.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Data-Driven Impulse Response Regularization via Deep Learning

We consider the problem of impulse response estimation for stable linear single-input single-output systems. It is a wellstudied problem where flexible non-parametric models recently offered a leap in performance compared to the classical finitedimensional model structures. Inspired by this development and the success of deep learning we propose a new flexible datadriven model. Our experiments ...

متن کامل

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Data-Driven Ghosting using Deep Imitation Learning

Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player...

متن کامل

Data-Driven Fuzzy Modeling Using Deep Learning

Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computing and Applications

سال: 2023

ISSN: ['0941-0643', '1433-3058']

DOI: https://doi.org/10.1007/s00521-023-08522-z